Výsledky výzkumu a další informace nejen
z oblasti přístupových telekomunikačních sítí.
Access server ISSN 1214-9675
Server vznikl za podpory Grantové agentury ČR.
15. ročník
Dnešní datum: 19. 09. 2017  Hlavní stránka | Seznam rubrik | Ke stažení | Odkazy  

Doporučujeme
Knihu o FTTx

Matlab server - on-line výpočty a simulace

E-learning - on-line kurzy

Trainingpoint - školení z oblasti TELCO a ICT

Kontakt
KTT FEL ČVUT
Napište nám

Redakční rada - pokyny pro autory a recenzenty

Copyright

Parametry

* Modely symetrických vedení založené na fyzikálních vlastnostech a geometrii kabelu

Vydáno dne 23. 04. 2006 (9494 přečtení)

Článek popisuje a srovnává dva modely symetrických vedení. Tyto modely vycházejí z geometrických rozměrů přenosového média a jeho fyzikálních vlastností (skin efekt, jev blízkosti). První model má svůj původ v teorii elektromagnetického pole a je založen na použití Besselových funkcí, druhý je empirický.


Models of symmetrical twisted pairs - based on geometrical size of transmission media and its physical features
Abstract
This article describes and compares two models of symmetrical twisted pairs. Those models are based on geometrical size of transmission media and its physical features (skin effect, effect of closeness). First model has its bases in electromagnetic field and uses Bessel function, second one is empirical.


Jak ukazuje dostupná literatura, je možné provádět simulace sekundárních parametrů symetrických vedení (např. pomocí modelů, které byly navrženy společnostmi Deutsche Telekom AG Company či Royal PTT Netherlands) nebo simulovat přímo primární parametry (jak to provádí například British Telecom). Další možností je použít některé z modelů, které vycházejí z fyzikálních vlastností vedení a geometrie kabelů. Z těchto modelů je možné sledovat změny parametrů vedení v závislosti na frekvenci a určit, zda modelovaný typ kabelu je vhodný pro nasazení určitého druhu přenosového systému - např. na bázi digitálních účastnických přípojek xDSL.

Fyzikální model založený na využití Besselových funkcí

Účastnická metalická vedení jsou popsána parciálními diferenciálními rovnicemi druhého řádu s konstantními koeficienty zvanými telegrafní rovnice:

(1)

(2)

Odvození telegrafní rovnice vychází z aplikace Kirhoffových zákonů na náhradní schéma homogenního vedení.

Obr. 1 Náhradní schéma elementu homogenního vedení

Dále pro homogenní vedení platí tzv. rovnice skinefektu (povrchového jevu):

(3)

kde Δ je Laplaceův operátor, J představuje vektor proudové hustoty, μ je magnetická permeabilita a ρ je elektrická rezistivita. Pokud uvažujeme harmonické změny a ustálený stav, platí:

(4)

Bude-li proud protékat ve směru osy z, je J=(0,0,Jz) a rovnice (4), vyjádřená v cylindrických souřadnicích, přejde na tvar:

(5)

Rovnice (5) představuje Besselovu rovnici, jejímž řešením jsou Besselovy funkce.

Model založený na využití Besselových funkcí je součástí doporučení ITU-T G.996.1, které se zabývá zkušebními postupy pro DSL transceivery. Primární parametry jsou ovlivněny geometrickými parametry jako jsou průměr jádra a žíly, tloušťka izolace, typ kabelového prvku apod. a dále použitým materiálem vodiče a izolace.

Pro měrný odpor R a indukčnost L izolovaného symetrického páru platí:

[Ω/m] (6)

resp.

[H/m] (7)

kde Ri a Li jsou zapříčiněny povrchovým jevem, Rn a Ln jsou důsledkem vířivých proudů uvnitř páru (jev blízkosti). La je vnitřní indukčnost.

Výše popsané veličiny jsou dány těmito vztahy:

[Ω/m] (8)

[Ω/m] (9)

[H/m] (10)

[H/m] (11)

[H/m] (12)

kde ρ je elektrická rezistivita [Ω.m], r je poloměr jádra [m], μ0 je magnetická permeabilita vakua [H/m], μr je relativní permeabilita vodiče. D je středová vzdálenost vodičů [m] a J0, J1, J2 jsou nultý, první a druhý řád Besselovy funkce prvního druhu. Veličina δ je hloubka vniku elektromagnetické vlny:

[m] (13)

kde ω je úhlová frekvence [rad.s-1].

Výraz (1+j)⁄δ přestavuje konstantu τ uvedenou v (5). Odvození lze nalézt např. v [4].

Empirický model

Tento model podle [1] využívá sadu rovnic, jejichž použitím se lze vyhnout Besselovým funkcím. Pro výpočet měrného odporu i měrné indukčnosti je nutné nejprve určit stejnosměrný odpor smyčky R0:

[Ω/m] (14)

Z (14) je patrné, že v (8) první činitel součinu představuje stejnosměrný odpor jednoho vodiče. Zbytek výrazu pak odpovídá impedanci způsobené povrchovým jevem. Podobně (9) lze rozdělit na pomyslný stejnosměrný odpor (s poloměrem rovným vzdálenost mezi vodiči) a impedanci způsobenou jevem blízkosti.

S ohledem na povrchový jev je stanoven bezrozměrný parametr w (tzv. normalizovaná frekvence) v závislosti na poloměru jádra, rezistivitě a permeabilitě:

[-] (15)

Z (15) je zřejmá souvislost mezi normalizovanou frekvencí u empirickém modelu a hloubkou vniku (13) u modelu s Besselovými funkcemi:

[-] (16)

Výsledný měrný odpor R a vnitřní měrnou indukčnost L0 lze získat z následujích vztahů:

[Ω/m] (17)

resp.

[H/m] (18)

Celková měrná indukčnost L je poté dána rovnicí:

[H/m] (19)

kde H je bezrozměrný geometrický faktor závisející na uspořádaní vodičů v kabelu. Pro symetrický pár je:

[-] (20)

Z dosazení předchozí rovnice do (16) tedy plyne, že:

[H/m] (21)

Obr. 2 a 4 ukazují v pásmu 100 kHz - 100 MHz průběhy měrného odporu a měrné indukčnosti symetrického páru s průměrem jádra d = 0,4 mm a různými poměry d/D: 0,44; 0,50; 0,57; 0,67; 0,80. (žíla z Cu, izolace z pevného PE). Jelikož na obr.1 není patrný rozdíl mezi oběma modely, je na obr. 2 zobrazen detail v oblasti 50 - 60 MHz.

Obr. 2 Průběhy měrného odporu v závislosti na poměrech d/D


Obr. 3 Detail průběhů měrného odporu v závislosti na poměrech d/D


Obr. 4 Průběhy měrné indukčnosti v závislosti na poměrech d/D

Obr. 5 a 6 porovnává empirický model měrného odporu resp. indukčnosti se skutečným průběhem, jenž byl měřen spektrálním analyzátorem Rohde & Schwarz ZVRE. Jedná se o telekomunikační kabel čtyřkové konstrukce s polyethylenovou izolací, průměrem jádra 0.4 mm a průměrem žíly 0.6 mm. Tento kabel je nejpoužívanějším médiem v přístupové síti Českého Telecomu.




Obr. 5 Porovnání empirického modelu se skutečným průběhem měrného odporu



Obr. 6 Porovnání empirického modelu se skutečným průběhem měrné indukčnosti

Ze simulací provedených v prostředí MatLab vyplývá, že modely pro měrný odpor se liší o méně než 2 % pro d/D ≤ 0,8. Modely pro měrnou indukčnost o méně než 10 % pro d/D ≤ 0,67. Pro měrnou indukčnost jsou modely rozdílné tím méně, čím menší je poměr d/D (čím dále jsou vodiče od sebe).

Závěr

Cílem příspěvku byla ukázka dvou modelů, které mohou být použity pro simulace vedení v přístupových sítích. Význam těchto modelů plyne zejména z faktu, že přístupové sítě jsou dnes stále častěji využívány pro digitální účastnické přípojky xDSL, které jsou provozovány na frekvencích, při nichž se již významně uplatňuje útlum vedení a další negativní vlivy spojené s přenosem.

Tento příspěvek vznikl za podpory grantu NPV 1ET300750402.

Literatura

[1] Hughes, H.: Telecommunications Cables, John Wiley & Sons, West Sussex - England, 1997
[2] Hubený, T.: Symmetric Line Models Based on the Bessel Functions, In Electronics and Telecommunications - Papers. Riga Technical University, Riga, 2005, s. 20-21.
[3] Doporučení ITU-T G.996.1 Test Procedures for Digital Subscriber Line (DSL) Transceivers, 2001
[4] Yoho, J: Physically-Based Realizable Modeling and Network Synthesis of Subscriber Loops Utilized in DSL Technology, Ph.D Thesis, Virginia,2001
[5] Kvasil, J.: Teorie sdělovacích vedení, ČVUT Praha, Praha, 1976



Autor:        T. Hubený
Pracoviště: České vysoké učení technické v Praze, FEL

Informační e-mail Vytisknout článek
Projekty a aktuality
01.03.2012: PROJEKT
Výzkum a vývoj nového komunikačního systému s vícekanálovým přístupem a mezivrstvovou spoluprací pro průmyslové aplikace TA02011015

01.01.2012: PROJEKT
Vývoj adaptabilních datových a procesních systémů pro vysokorychlostní, bezpečnou a spolehlivou komunikaci v extrémních podmínkách VG20122014095

09.10.2010: PROJEKT
Výzkum a vývoj datového modulu 10 Gbit/s pro optické a mikrovlnné bezdrátové spoje, FR-TI2/621

09.01.2010: PROJEKT
Sítě s femtobuňkami rozšířené o řízení interference a koordinaci informací pro bezproblémovou konektivitu, FP7-ICT-2009-4 248891

09.11.2008: PROJEKT
Ochrana člověka a techniky před vysokofrekvenčním zářením, FI-IM5/202

20.06.2008: Schválení
Radou pro výzkum a vývoj jako recenzovaný časopis

01.04.2007: PROJEKT
Pokročilá optimalizace návrhu komunikačních systémů pomocí neuronových sítí, GA102/07/1503

01.07.2006: Doplnění sekce pro registrované

12.04.2005: Zavedeno recenzování článků

30.03.2005: Výzkumný záměr
Výzkum perspektivních informačních a komunikačních technologií MSM6840770014

29.11.2004: Přiděleno ISSN

04.11.2004: Spuštění nové podoby Access serveru

18.10.2004: PROJEKT
Optimalizace přenosu dat rychlostí 10 Gbit/s, GA102/04/0773

04.09.2004: PROJEKT
Specifikace kvalitativních kritérií a optimalizace prostředků pro vysokorychlostní přístupové sítě, NPV 1ET300750402

04.06.2004: PROJEKT
Omezující faktory při širokopásmovém přenosu signálu po metalických párech a vzájemná koexistence s dalšími systémy, GA102/03/0434

Web site powered by phpRS PHP Scripting Language MySQL Apache Web Server

NAVRCHOLU.cz

Tento web site byl vytvořen prostřednictvím phpRS - redakčního systému napsaného v PHP jazyce.
Na této stránce použité názvy programových produktů, firem apod. mohou být ochrannými známkami
nebo registrovanými ochrannými známkami příslušných vlastníků.